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We considered the motion of a “top” or gyroscope that was set into motion at angular 
velocity 𝜔 along one of its principal axes and then supported at a single point on its rotation 
axis.  The top is rotating about one of its principal axes, which we will call the 3-axis, with 
direction 𝑒3� .  The top is observed to precess in a cone around the vertical direction 𝑧̂.  We can 
write the angular momentum as 𝐿�⃗ = 𝜆3𝜔𝑒3� , where 𝜆3 is the principal moment for this axis.  
There are two forces acting on the top, the normal force at the point of support, and the 
weight, acting on the center of mass.  We take the origin to be at the point of support so that 
only the weight exerts a torque.  The torque leads to a time rate of change of the angular 

momentum: Γ⃗ = 𝐿�⃗ ̇ .  The torque is Γ⃗ = 𝑅�⃗ × 𝑀𝑔⃗, which points in a direction perpendicular to 
𝑒3� , and therefore 𝐿�⃗ .  This means that �𝐿�⃗ � remains fixed, but the direction of 𝐿�⃗  will change.  

We found that 𝑒3�̇ = Ω��⃗ × 𝑒3� , where Ω��⃗ = 𝑅𝑅𝑅
𝜆3𝜔

𝑧̂, showing that the principal axis of the top 𝑒3�  is 

rotating around the 𝑧̂ axis at angular velocity 𝑅𝑅𝑅
𝜆3𝜔

.  This is the rate of precession.  From the 

demonstration we saw that as the gyroscope winds down (𝜔 decreases), the rate of precession 
increases, consistent with this result. 

We then considered the description of Newton’s second law from the perspective of an 
observer on the rotating object.  The observer in the “body frame” can identify the principal 
axes of the object and describe the angular momentum using the diagonalized inertia tensor 
as 𝐿�⃗ = (𝜆1𝜔1, 𝜆2𝜔2,𝜆3𝜔3).  An inertial observer in the “space frame” is in position to 
identify correctly the net torque Γ⃗ acting on the angular momentum vector, and to write 

Newton’s second law of motion (in rotational form) as Γ⃗ = �𝑑𝐿
�⃗

𝑑𝑑
�
𝑠𝑠𝑠𝑠𝑠

.  We learned how to 

translate the time derivative of a vector quantity from an inertial frame to a rotating reference 

frame in Lecture 10: �𝑑𝑄
�⃗

𝑑𝑑
�
𝑆𝑆𝑆𝑆𝑆

= �𝑑𝑄
�⃗

𝑑𝑑
�
𝐵𝐵𝐵𝐵

+ Ω��⃗ × 𝑄�⃗ , where 𝑄�⃗  is the vector in question and 

the non-inertial reference frame is rotating with angular velocity Ω��⃗ .  In this case we can write 

the equations of motion as witnessed in the body frame as Γ⃗ = �𝑑𝐿
�⃗

𝑑𝑑
�
𝐵𝐵𝐵𝐵

+ ω��⃗ × 𝐿�⃗  , which 

translates in component form into the Euler equations: 

Γ1 = 𝜆1𝜔̇1 − 𝜔2𝜔3(𝜆2 − 𝜆3) 

Γ2 = 𝜆2𝜔̇2 − 𝜔1𝜔3(𝜆3 − 𝜆1) 

Γ3 = 𝜆3𝜔̇3 − 𝜔1𝜔2(𝜆1 − 𝜆2) 

http://www.upscale.utoronto.ca/GeneralInterest/Harrison/Flash/ClassMechanics/Precession/Precession.html


2 
 

This set of equations describes how the angular velocity vector evolves as it is acted upon 
by a net external torque.  The hard part of using these equations is taking the torque from the 
space frame and expressing it in component form in the body frame (i.e. Γ1, Γ2, Γ3).  When 
applied to the case of the spinning top discussed above, we note that Γ3 = 0 (the torque acts 
in a direction perpendicular to 𝑒3� ) and  𝜆1 = 𝜆2, hence 𝜆3𝜔̇3 = 0, so that 𝜔3 is constant.  
Thus the angular velocity vector remains aligned with 3-axis and no other component of ω��⃗  is 
excited. 

To simplify things further we take the special case of rotational motion under torque-free 
conditions, Γ1 = Γ2 = Γ3 = 0.  An application of these equations was to the case of an object 
rotating about one principal axis (𝑒̂3), but then given a small kick to produce rotations about 
the other axes (𝑒̂1).  The analysis led to a simple equation of motion: 

𝜔̈1 = −�(𝜆3−𝜆2)(𝜆3−𝜆1)
𝜆1𝜆2

𝜔3
2�𝜔1, where it was found that 𝜔3 is approximately constant.  This 

yields simple-harmonic motion (SHM) for 𝜔1 and 𝜔2 as a function of time if 𝜆3 is either the 
largest or smallest of the three principal moments.  SHM means that the motion about the 
original axis is stable and the motion about the other axes oscillates around zero.  If 𝜆3 is the 
middle eigenvalue, then the square-bracket term is negative, yielding a solution for 𝜔1(𝑡) 
that grows exponentially in time.  This is a sign of instability.  We demonstrated this 
phenomenon with a book, where motion around the principal axes with largest and smallest 
moments was fairly stable, while motion about the third (middle moment of inertia) was 
clearly much less stable.  The video from the ISS showing torque-free rotational motion of 
the Russian-English dictionary illustrated this quite clearly. 

Finally we derived the equation of motion that describes nutation of a precessing 
gyroscope in a gravitational field.  First we introduced the Euler angles.  This is a convention 
that describes the orientation of an object based on a combination of both the space frame 
and the body frame defined by the principal axes of the object.  Starting with both coordinate 
systems aligned (𝑥� ↔ 𝑒̂1, etc.) and the origins coincident, first rotate by an angle 𝜑 around 
the 𝑧̂ axis.  Next rotate about the new 𝑒̂2′ axis by and angle 𝜃 to create the final 𝑒̂3 direction.  
Finally rotate by and angle 𝜓 about the 𝑒̂3 axis.  This process is simply a convention for how 
to align an arbitrary rigid body relative to its center of mass.   

With the Euler angles, we can now express the angular velocity and angular kinetic 
energy in terms of these angles and their time derivatives.  In other words we can say 
𝜔��⃗ = 𝜙̇𝑧̂ + 𝜃̇𝑒̂2′ + 𝜓𝑒̂3̇  and for the kinetic energy 𝑇 = 1

2
𝜔��⃗ ∙ 𝐿�⃗ = 1

2
(𝜆1𝜔1

2 + 𝜆2𝜔2
2 + 𝜆3𝜔3

2), 
which is written in terms of the body frame.  If we translate the expression for the rotational 
kinetic energy in to the Euler angles, after some vector algebra, we get, 𝑇 = 1

2
𝜆1�𝜙̇2 sin2 𝜃 +

𝜃̇2� + 1
2
𝜆3�𝜓̇ + 𝜙̇ cos 𝜃�

2
.  This expression assumes a cylindrically symmetric object (e.g. a 

gyroscope) with 𝜆1 = 𝜆2.  The potential energy of the gyroscope is simply 𝑈 = 𝑀𝑀𝑀 cos 𝜃, 

https://www.youtube.com/watch?v=LzVItPwiQyI
https://www.youtube.com/watch?v=hVKz9G3YXiw
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where 𝑀 is the total mass of the gyroscope, 𝑅 is the location of the center of mass from the 
point of support, and 𝑔 is the acceleration due to gravity.  The Lagrangian for the gyroscope 
is just ℒ = 𝑇 − 𝑈, and one sees immediately that both 𝜙 and 𝜓 are cyclic (or ignorable) 
coordinates, hence their conjugate momenta 𝑝𝜙 and 𝑝𝜓 are constants of the motion.  These 
constants are equal to the z-component and the 3-component of the angular momentum 
vector.  The remaining 𝜃 equation is a one-dimensional second order differential equation for 
a “particle” that lives in a limited-range effective potential 𝑈𝑒𝑒𝑒(𝜃) with total energy 

𝐸 = 𝑇 + 𝑈𝑒𝑒𝑒(𝜃) given by 𝐸 = 1
2
𝜆1𝜃̇2 + 𝑈𝑒𝑒𝑒(𝜃) and 𝑈𝑒𝑒𝑒(𝜃) = �𝑝𝜙−𝑝𝜓 cos𝜃�

2

2𝜆1 sin2 𝜃
+ 𝑝𝜓2

2𝜆3
+

𝑀𝑀𝑀 cos𝜃.  The effective potential diverges at the two limiting values of 𝜃, namely 0 and π, 
and forms a minimum in between.  The “𝜃-particle” with finite total energy 𝐸 therefore 
bounces back and forth between two classical turning points in 𝜃, which represent the limits 
of the “nodding” up and down, which is the phenomenon known as nutation. 


